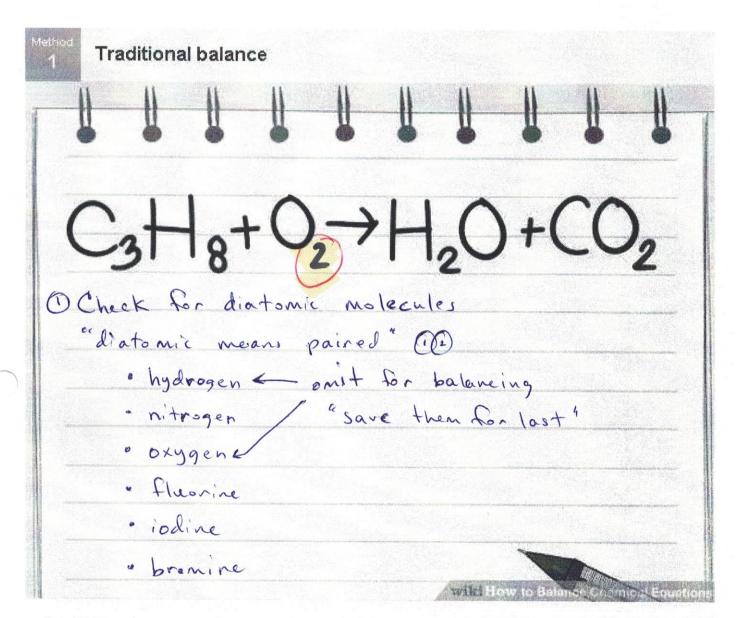


- Write down your given equation. For this example, you will use:
 - C₃H₈ + O₂ --> H₂O + CO₂

NOTES BALANCING EQUATIONS

• This reaction occurs when propane (C₃H₈) is burned in the presence of oxygen to produce water and carbon dioxide.

la. balance nonetals

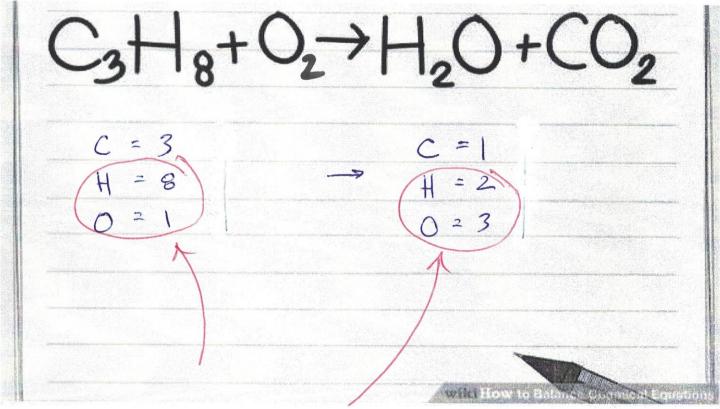

Name	hey
	1 /

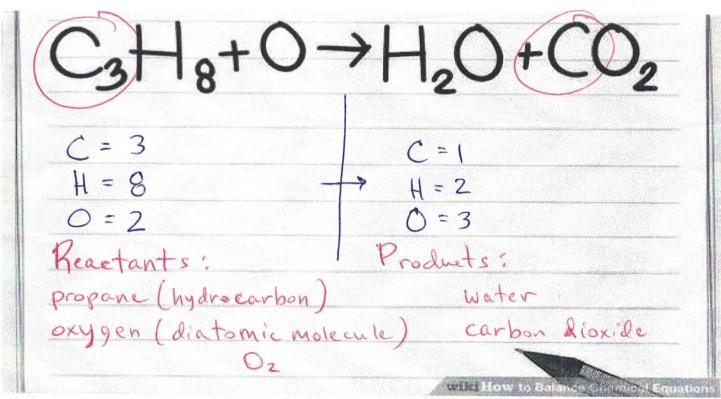
per

date

mail box

NOTES BALANCING EQUATIONS




Write down your given equation. For this example, you will use:

- C₃H₈ + O₂ --> H₂O + CO₂
- This reaction occurs when propane (C₃H₈) is burned in the presence of oxygen to produce water and carbon dioxide.

- Write down the number of atoms per each element that you have on each side of the equation. Look at the subscripts next to each atom to find the number of atoms in the equation.
 - Left side: 3 carbon, 8 hydrogen and 2 oxygen.
 - Right side: 1 carbon, 2 hydrogen and 3 oxygen.

If you have more than one element left to balance: select the element that appears in only a single molecule of reactants and in only a single molecule of products. This means that you will need to balance the carbon atoms first.

- Add a coefficient to the single carbon atom on the right of the equation to balance it with the 3 carbon atoms on the left of the equation.
 - C₃H₈ + O₂ --> H₂O + 3CO₂
 - The coefficient 3 in front of carbon on the right side indicates 3 carbon atoms just as the subscript 3 on the left side indicates 3 carbon atoms.
 - In a chemical equation, you can change coefficients, but you must never alter the subscripts.

C3H8+O2>4H2O+3CO2

$$C=3$$

$$H=8$$

$$O=2$$

$$C=3$$

$$H=2$$

$$O=7$$

$$O=7$$

$$O=7$$

$$O=7$$

The 4 coefficient balances hydrogen

- 6 Balance the hydrogen atoms next. You have 8 on the left side. So you'll need 8 on the right side.
 - C₃H₈ + O₂ --> 4H₂O + 3CO₂
 - On the right side, you now added a 4 as the coefficient because the subscript showed that you already had 2 hydrogen atoms.
 - VVhen you multiply the coefficient 4 times by the subscript 2, you end up with 8.
 - The other 6 atoms of Oxygen come from 3CO₂.(3x2=6 atoms of oxygen+ the other 4=10)

C3H8+502>4H2O+3CO2

$$C = 3(1) 3$$
 $C = 3(1) 3$
 $H = 8(1) 8$ \longrightarrow $H = 2(4) 8$
 $O = 2(5) 10$ $O = 7 10$

The 5 coefficient balances Oxygen

Will How to Balance Coorded Equation

Balance the oxygen atoms.

- Because you've added coefficients to the molecules on the right side of the
 equation, the number of oxygen atoms has changed. You now have 4 oxygen
 atoms in the water molecule and 6 oxygen atoms in the carbon dioxide molecule.
 That makes a total of 10 oxygen atoms.
- Add a coefficient of 5 to the oxygen molecule on the left side of the equation. You
 now have 10 oxygen molecules on each side.
- C₃H₈ + 5O₂ --> 4H₂O + 3CO₂.

Balance equations "by inspection" with these steps:

- 1. Check for diatomic molecules. (See below)
- 2. Balance the metals (not Hydrogen).
- 3. Balance the nonmetals (not Oxygen).
- 4. Balance oxygen. 5. Balance hydrogen.
 - 6. The equation should now be balanced, but recount all atoms to be sure.
 - 7. Reduce coefficients (if needed).

Common diatomic molecules:

Hydrogen (H₂

Nitrogen (N₂

Oxygen (O_2)

Fluorine (F₂)

Chlorine (Cl₂)

Iodine (I_2)

Bromine (Br₂)

If after balancing O or H your metal or others are unbalanced, go back and rebalance those one at a time again sequencially. Then rebalance 0 ; H Then step 6, 7